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Equivalence of linear response among extended optimal velocity models
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We investigate the property of extended optimal velocity~OV! models of traffic flow, in which a driver looks
at arbitrary number of vehicles that precede. We prove an equivalence of linear response among extended
models. This equivalence provides a natural understanding of the improvement of the stability of traffic flow.
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Over the past decade, many physicists have been in
ested in the traffic dynamics, especially traffic congestion
is well known that free traffic flow on highway changes
congested flow and clusters of vehicles are formed when
vehicle density increases. To explain this phenomenon, a
of studies have been done from the physical viewpo
@1–5#. The optimal velocity~OV! model@6,7# is one of such
traffic models, which have successfully described the
namical formation of traffic congestion. In the framework
the OV model, it is shown that the congestion appears
certain condition, and that the reaction to the preceding
hicle plays an essential role to organize traffic congestio

In the social viewpoint, the most important problem
how to suppress the appearance of traffic congestion. H
ever, the only possibility to improve the stability of traffi
flow in the original OV model is to take a large value
sensitivity, because a driver is supposed to look at the
ceding vehicle only. In order to efficiently suppress the f
mation of congestion, it is necessary to extend the model
example, incorporating the effect of watching other vehic
as well as the preceding vehicle. Several authors have sh
that the stability of traffic flow is improved by the effec
from other vehicles; a vehicle that follows@8–10#, the next
to the preceding vehicle@11,12#, and many other vehicle
@13#.

In the previous paper we extended the OV model s
that a driver looks at arbitrary number of vehicles that p
cede and follow@14#. Due to the extension, the stability o
traffic flow is improved. The extended models have differe
features in the following two cases. One is the ‘‘forwa
looking’’ OV model which incorporates the effect from ve
hicles that precede and the other is the ‘‘backward lookin
OV model which incorporates the effect from vehicles th
follow. We found there exists a certain set of paramet
which make traffic flow ‘‘most stable’’ in the former case.
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In this paper, we discuss the property of the forward loo
ing OV model with the set of ‘‘most stable’’ parameters. W
investigate the linear response to a disturbance on a unif
flow, and prove an equivalence of the linear response
tween the extended model and the OV model. The equ
lence clarifies the reason why the extension improves
stability and also shows the limitation of stability.

The forward looking OV model with the parameterk1 is
formulated by the equation of motion

d2xn

dt2
5aFV~Dxn1k1

, . . . ,Dxn11 ,Dxn!2
dxn

dt G , ~1!

wherexn is position of thenth vehicle andDxn1k[xn1k11
2xn1k for k5k1 ,k121, . . . ,0 are headway of the
(n1k)th vehicle. Vehicles are numbered such that then
11)th vehicle precedes thenth vehicle. The model with
k150 is the original OV model. The extended OV functio
V(Dxn1k1

, . . . ,Dxn) represents an optimal velocity of th

nth vehicle. The parametera, which has the dimension o
inverse of time, is called sensitivity.

Model ~1! has a solution of uniform flow

xn5bn1V~b,b, . . . ,b!t1const, ~2!

where all the vehicles have the same headwayb and the
same velocity V(b, . . . ,b).

Let yn be a small fluctuation imposed on the unifor
flow. From Eq.~1!, yn(t) satisfies the linearized equation

d2yn

dt2
5aF (

k50

k5k1

f kDyn1k2
dyn

dt G , ~3!

whereDyn1k5yn1k112yn1k and f k is defined by

f k5
]

]Dyn1k
V~b1Dyn1k1

, . . . ,b1Dyn!uDy50 ~4!

for k5k1 ,k121, . . . ,0.
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We can calculate the stability condition for sensitivitya.
If a is larger than a certain value decided byf k , then uniform
flow ~2! is stable. In the previous paper, we have shown t
the following choice off k ,

f k1
5 f k1215 f k1225•••5 f 05

1

k111
, ~5!

gives the minimum value of sensitivitya which makes the
uniform flow stable@14#.

In this paper we consider the model with parameters~5!,
and show an equivalence between this model and the orig
OV model with respect to the behavior of linear response
the disturbance. For this purpose, we define the follow
test function@14# and prove the function for the extende
model is equal to that for the OV model:

Flm~ t !5
1

e2 (
n

dlyn~ t !

dtl
dmyn~ t !

dtm
, ~6!

where the indicesl andm are arbitrary non-negative integer
ande;O(yn) is a normalization constant. The test functio
is a general bilinear function made fromyn(t). For example,
the function represents the fluctuation of position forl 5m
50, and the fluctuation of velocity forl 5m51.

Linearized equation~3! with the set of parameters~5!
leads to

d2yn

dt2
5aF 1

k111
~yn1k1112yn!2

dyn

dt G . ~7!

We assume the periodic boundary conditionxN[x0, where
N is the total number of vehicles. Equation~7! has mode
solutions

yn,u5exp@ inu2 iv~u!t#, ~8!

whereu52p j /N, j 50,1,2, . . . ,N21. v(u) is given by the
solution of the algebraic equation

v~u!21 iav~u!1a
1

k111
$exp@ i ~k111!u#21%50.

~9!

As a simple case, we consider the initial conditi
yn(0)5edn0 and ẏn(0)50. Then the solution of Eq.~7!
becomes

yn~ t !5
e

N (
u,s

v2s~u!

v2s~u!2vs~u!
exp@ inu2 ivs~u!t#,

~10!

wheres56 is an index of two solutions of Eq.~9!.
Using this solution and carrying out the summation w

respect ton, we can obtainFlm(t), which is expressed sym
bolically as

Flm~ t !5
1

N (
u

G„v~u!,t…. ~11!
01710
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We note that the functionG„v(u),t… does not depend explic
itly on u.

In the OV model, we remind that the algebraic equati
for v(u) corresponding to Eq.~9! is written as

v~u!21 iav~u!1a f@exp~ iu!21#50, ~12!

where f 5V8(b). To investigate the equivalence betwe
these models, we set

f 5
1

k111
. ~13!

Denoting the solution of Eq.~12! by vov(u), the solution of
Eq. ~9! is expressed as

v~u!5vov
„~k111!u…. ~14!

Then test function~11! is rewritten as

Flm~ t !5
1

N (
u

G„vov@~k111!u#,t…. ~15!

If N and k111 are mutually prime,Flm(t) reduces to the
test function for the OV model.

Flm~ t !5
1

N (
u

G„vov~u!,t…[Flm
ov~ t !. ~16!

In general, the summation foru is turned to the integra-
tion in the limit N→`. The test function is expressed as

Flm~ t !5
1

2pE0

2p

duG„vov@~k111!u#,t… ~17!

5
1

2p~k111!
E

0

2(k111)p

dfG„vov~f!,t… ~18!

5
1

2pE0

2p

dfG„vov~f!,t… ~19!

5Flm
ov~ t !. ~20!

In the derivation from Eq.~18! to Eq. ~19!, we use the peri-
odicity of the functionv(f) with respect tof.

The equality of test functions is obtained for the case
the initial conditionyn(0)5edn0 andẏn(0)50, where a dis-
turbance is added to only the first vehicle. For more gene
case where disturbances are added to all vehicles rando
we can find the same result by taking an average over in
conditions. Thus we have proved the equivalence of lin
response between the forward looking model with the se
‘‘most stable’’ parameters~5! and the original OV model
with parameter~13!.

Suppose the OV model withf 5V8(b)51. The extended
model has the same uniform flow solution as this model, a
has the same linear response as the OV model withf /(k1

11). Note that the stability condition of the uniform flow i
given by a.2 f in the OV model. This condition indicate
3-2
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that a smallf makes the traffic flow stable. Thus the improv
ment of the stability in the extended model is naturally u
derstood by the equivalence to the OV model with a smaf.

The ‘‘most stable’’ parameters and the equivalence m
tioned above indicate the existence of a limitation in t
improvement of the stability. We have shown that the sta
ity of the extended model is understood within the fram
work of the original OV model. Therefore we can conclu
that the traffic congestion is unavoidable even in the
tended models as the same as the original OV model
other words, the instability of traffic flow cannot be com
pletely removed by the ‘‘forward looking’’ extension of th
OV model. The instability of traffic flow always exists in
g

hy

ug

ta
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certain region of parameter space, which corresponds to
real situation where vehicles run with large velocity a
small headway.

It is often considered that automatic driving systems c
stabilize traffic flow by utilizing so-called ITS, where eac
vehicle can obtain the information of many other vehicle
Our result indicates that there is a limitation in velocity
density of vehicles even in such situation.
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