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Equivalence of linear response among extended optimal velocity models
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We investigate the property of extended optimal velo@@y) models of traffic flow, in which a driver looks
at arbitrary number of vehicles that precede. We prove an equivalence of linear response among extended
models. This equivalence provides a natural understanding of the improvement of the stability of traffic flow.
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Over the past decade, many physicists have been inter- In this paper, we discuss the property of the forward look-
ested in the traffic dynamics, especially traffic congestion. ling OV model with the set of “most stable” parameters. We
is well known that free traffic flow on highway changes to investigate the linear response to a disturbance on a uniform
congested flow and clusters of vehicles are formed when th#ow, and prove an equivalence of the linear response be-
vehicle density increases. To explain this phenomenon, a Idween the extended model and the OV model. The equiva-
of studies have been done from the physical viewpoini€nce clarifies the reason why the extension improves the
[1-5]. The optimal velocity(OV) model[6,7] is one of such stability and also sh_ows the Ilmltathn of stability. _
traffic models, which have successfully described the dy- 1he forward looking OV model with the parameter is
namical formation of traffic congestion. In the framework of formulated by the equation of motion
the OV model, it is shown that the congestion appears in a o2
cgrtam condition, anq that the reacthn to thg precedln_g ve- in —al V(AXy g s e e AXey 1, AX) —
hicle plays an essential role to organize traffic congestion. dt *

In the social viewpoint, the most important problem is
how to suppress the appearance of traffic congestion. Howvherex, is position of thenth vehicle andAX,,, (=Xp k1
ever, the only possibility to improve the stability of traffic —Xn+x for k=k, ,k,—1,...,0 are headway of the
flow in the original OV model is to take a large value of (N+k)th vehicle. Vehicles are numbered such that the (
sensitivity, because a driver is supposed to look at the pret 1)th vehicle precedes theth vehicle. The model with
ceding vehicle only. In order to efficiently suppress the for-K+ =0 is the original OV model. The extended OV function
mation of congestion, it is necessary to extend the model, fo¥ (AXn+k, . - - - AXp) represents an optimal velocity of the
example, incorporating the effect of watching other vehiclegnth vehicle. The parametes, which has the dimension of
as well as the preceding vehicle. Several authors have showvifiverse of time, is called sensitivity.
that the stability of traffic flow is improved by the effect =~ Model (1) has a solution of uniform flow
from other vehicles; a vehicle that folloW8-10], the next

dx,
dt ]’

1

to the preceding vehiclgll,17, and many other vehicles Xp=bn+V(b,b, ... b)t+const, ()
[13]

In the previous paper we extended the OV model suctwhere all the vehicles have the same headwagnd the
that a driver looks at arbitrary number of vehicles that pre-same velocity Vb, . .. ,b).

cede and follow[14]. Due to the extension, the stability of  Let y, be a small fluctuation imposed on the uniform
traffic flow is improved. The extended models have differentflow. From Eq.(1), y,(t) satisfies the linearized equation
features in the following two cases. One is the “forward
looking” OV model which incorporates the effect from ve- d?y, dy,

hicles that precede and the other is the “backward looking” a go FAYn+k— dt |’ )
OV model which incorporates the effect from vehicles that
follow. We found there exists a certain set of parameters hereA _ B andf. is defined b
which make traffic flow “most stable” in the former case. " Ynek= Yntke1™ Yk k! ! y

k=k,

fy=——V(b+A e DTAYD) A= 4
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We can calculate the stability condition for sensitivily =~ We note that the functio®(w(6),t) does not depend explic-
If ais larger than a certain value decidedfRy then uniform itly on 6.
flow (2) is stable. In the previous paper, we have shown that In the OV model, we remind that the algebraic equation
the following choice off,, for w(6) corresponding to Eq9) is written as

1 w(0)’+iaw(0)+af[expid)—1]=0, (12
f, =T, -1=T, 2= =To=(— 7. 5
N where f=V’'(b). To investigate the equivalence between

gives the minimum value of sensitivitx which makes the these models, we set

uniform flow stableg14]. 1
In this paper we consider the model with parametéjs f= )

and show an equivalence between this model and the original kit+1

OV model with respect to the behavior of linear response t

the disturbance. For this purpose, we define the foIIowin%

test function[14] and prove the function for the extended

(13

enoting the solution of Eq12) by »°¥(#), the solution of
g. (9) is expressed as

model is equal to that for the OV model: w(0)=w((k, +1)6). (14)
1 d'y,(t) d™yn(t) Then test functior(11) is rewritten as
Fin()=— > o 29 ®) "
€ n dt dt 1
Fim(t) == G(w(k;+1)6],1). 15
where the indicesandm are arbitrary non-negative integers, im(t) N Eo (@7T(k+ +1)6L.0) 9

and e~0O(y,) is a hormalization constant. The test function

is a general bilinear function made froyg(t). For example, If N andk,+1 are mutually primeF,(t) reduces to the
the function represents the fluctuation of position ferm  test function for the OV model.

=0, and the fluctuation of velocity fd=m=1.

. . . : 1
lealg;\?gnzed equation(3) with the set of parameter€b) Fin(t)= = E{, G(w®(0),1)=F2%(t). (16)
d%y, 1 dy, In general, the summation fat is turned to the integra-
T k+—+1(yn+k++1_yn)_ at I (7)  tion in the limit N—c. The test function is expressed as
- - 1
Wg assume the periodic boundary condltmExo, where Fin(t)=— deG(wov[(k++1)0] t) (17)
N is the total number of vehicles. Equatidi) has mode 0
solutions
2(k,+1)m
Y o=exgino—iw()t], (8) :mﬁ) dopG(w™(¢),1) (18)
whered=2mxj/N, j=0,1,2 ... N—1. w(0) is given by the 1 (2
solution of the algebraic equation :Ef déG(0™(¢),1) (19)
1
2.4 ; -
w(0) +|aw(6)+ak++1{exm(k++1)6] 1}=0. —FY(1). (20)

©)
In the derivation from Eq(18) to Eq.(19), we use the peri-
As a simple case, we consider the initial condition odicity of the functionw(¢) with respect tog.

yn(0)=€68,0 and y,(0)=0. Then the solution of Eq(7) The equality of test functions is obtained for the case of
becomes the initial conditiony,,(0)= €8,, andy,(0)=0, where a dis-
turbance is added to only the first vehicle. For more general
_€ D ®_4(0) exinf—iw, (0] case where disturbances are added to all vehicles randomly,
Ynl N T o_(0)—w,(0) 7 ' we can find the same result by taking an average over initial
(10)  conditions. Thus we have proved the equivalence of linear
response between the forward looking model with the set of
whereo = * is an index of two solutions of Eq9). “most stable” parameterg5) and the original OV model
Using this solution and carrying out the summation withwith parameter13).
respect tan, we can obtairF,,(t), which is expressed sym-  Suppose the OV model with=V'(b)=1. The extended
bolically as model has the same uniform flow solution as this model, and
1 has the same linear response as the OV model itk
+1). Note that the stability condition of the uniform flow is
Fim(t)= N E Glw(8).1). (D given bya>2f in the OV model. This condition indicates
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that a smalf makes the traffic flow stable. Thus the improve- certain region of parameter space, which corresponds to the
ment of the stability in the extended model is naturally un-real situation where vehicles run with large velocity and
derstood by the equivalence to the OV model with a sifall small headway.

The “most stable” parameters and the equivalence men- It is often considered that automatic driving systems can
tioned above indicate the existence of a limitation in thestabilize traffic flow by utilizing so-called ITS, where each
improvement of the stability. We have shown that the stabil-vehicle can obtain the information of many other vehicles.
ity of the extended model is understood within the frame-Our result |nd|_cates that _there is a I|m_|tat|on in velocity or
work of the original OV model. Therefore we can conclude density of vehicles even in such situation.
that the traffic congestion is unavoidable even in the ex-
tended models as the same as the original OV model. In
other words, the instability of traffic flow cannot be com-  This work was partly supported by a Grant-in-Aid for
pletely removed by the “forward looking” extension of the Scientific ResearcliC) (No.1556005]1 of the Japanese Min-
OV model. The instability of traffic flow always exists in a istry of Education, Science, Sports and Culture.
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